
Starting LLVM Development in
Visual Studio on Windows
It’s not difficult, and it’s unbelievably useful

Slide accessibility template

• Title and subtitle text

• Body text, including italics (no underline or bold)

• Code and code-specific references

• Important/highlighted code

• Commands and file names

Not all text will be the same size; feel free to move closer
or ask me to zoom in or pause so you can read
something.

About Me

• Jonathan Smith,
Principal Software Engineer @ FiveTwelve

• U.S. Navy veteran and former cyber
operator

• Compiler and defensive software
engineering for seven years

• Snowboarding, singing, failing to learn
guitar

• All social contact info @ https://jvste.ch

Why Windows?

• #beginners channel on the LLVM Discord

• Beginners category on the LLVM Discourse
(https://discourse.llvm.org)

• Everyone must start somewhere, and most people
start on Windows

• WSL[2] provides easy, first-class access to Linux

https://discourse.llvm.org/

Why Visual Studio? Why not VSCode?

• Visual Studio (community edition) is free and
“batteries are included”

• Subjective: Visual Studio’s debugger is easier to
learn than GDB (or LLDB)

• I have never used VSCode for LLVM development

Bootstrapping
Clang and LLVM
CMake presets instead of toolchains // Ninja instead of MSBuild

CMake Presets
https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

• JSON configuration files natively supported by
both CMake and Visual Studio

• Less verbose than writing CMake cache or
toolchain scripts

• Completely composable

• CMakePresets.json – project-provided
CMakeUserPresets.json – user-specific

https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

Initial CMakeUserPresets.json

{
 "version": 5,
 "cmakeMinimumRequired": {
 "major": 3,
 "minor": 23,
 "patch": 0
 },
 "configurePresets": [
 {
 "name": "default",
 "hidden": true,
 "generator": "Ninja",
 "binaryDir": "${sourceDir}/build/${presetName}/build",
 "install Dir": "${sourceDir}/build/${presetName}/install"
 },
 {
 "name": "release",
 "inherits": "default",
 "hidden": true,
 "cacheVariables": {
 "CMAKE_BUILD_TYPE": "Release"
 }
 },

{
 "name": "windows-default",
 "inherits": "default",
 "hidden": true,
 "architecture": {
 "value": "x64",
 "strategy": "external"
 }
 },
 {
 "name": "windows-release",
 "inherits": ["windows-default", "release"],
 "hidden": true
 },
 {
 "name": "bootstrap",
 "inherits": "windows-release",
 "cacheVariables": {
 "LLVM_INCLUDE_BENCHMARKS": false,
 "LLVM_INCLUDE_EXAMPLES": false,
 "LLVM_INCLUDE_RUNTIMES": false,
 "LLVM_INCLUDE_TESTS": false,
 "LLVM_ENABLE_PROJECTS": "clang;lld",
 "LLVM_PARALLEL_LINK_JOBS": "1",
 "LLVM_TARGETS_TO_BUILD": "X86"
 }
 }
]
}

{
 "name": "bootstrap",
 "inherits": "windows-release",
 "cacheVariables": {
 "LLVM_INCLUDE_BENCHMARKS": false,
 "LLVM_INCLUDE_EXAMPLES": false,
 "LLVM_INCLUDE_RUNTIMES": false,
 "LLVM_INCLUDE_TESTS": false,
 "LLVM_ENABLE_PROJECTS": "clang;lld",
 "LLVM_PARALLEL_LINK_JOBS": "1",
 "LLVM_TARGETS_TO_BUILD": "X86"
}

Initial CMakeUserPresets.json (zoom)

Building and installing

Link: https://youtu.be/T8zDXvBvaiU

https://youtu.be/T8zDXvBvaiU

Creating a debug-mode
Clang + LLVM toolchain
Optimize for speed where it matters

Key points for debug builds

• CMAKE_BUILD_TYPE="Debug" (not
“RelWithDebInfo”)

• Build llvm-tablegen with optimizations

• Disable debug iterator support in the Visual C++
run-time

• DO NOT use the release version of the Visual C++
run-time

{
 "name": "debug",
 "inherits": "default",
 "hidden": true,
 "cacheVariables": {
 "CMAKE_BUILD_TYPE": "Debug"
 }
}

Base debug configuration

{
 "name": "windows-debug",
 "inherits": ["windows-default", "debug"],
 "hidden": true,
 "cacheVariables": {
 "CMAKE_C_FLAGS_DEBUG": "-D_ITERATOR_DEBUG_LEVEL=0",
 "CMAKE_CXX_FLAGS_DEBUG": "-D_ITERATOR_DEBUG_LEVEL=0"
 }
}

Windows-specific debug configuration

{
 "name": "common-llvm-settings",
 "hidden": true,
 "cacheVariables": {
 "CMAKE_C_COMPILER": "${sourceDir}/build/bootstrap/install/bin/clang-cl.exe",
 "CMAKE_CXX_COMPILER": "${sourceDir}/build/bootstrap/install/bin/clang-cl.exe",
 "CMAKE_EXPORT_COMPILE_COMMANDS": true,
 "LLVM_ENABLE_LLD": true,
 "LLVM_ENABLE_PROJECTS": "clang;clang-tools-extra;mlir;lld",
 "LLVM_PARALLEL_LINK_JOBS": "1"
 }
}

LLVM settings for both debug and
release builds

maybe

{
 "name": "llvm-debug",
 "inherits": ["windows-debug", "common-llvm-settings"],
 "cacheVariables": {
 "LLVM_OPTIMIZED_TABLEGEN": true
 }
}

LLVM-specific debug configuration

Debug mode building and installing

Expect it to take at least twice as long to build and
use far more storage space.

Debug mode building and installing

Expect it to take at least twice as long to build and
use far more storage space.

0

0.5

1

1.5

2

2.5

3

3.5

Hours

Build times

Release mode (minimal "bootstrap" config)

Release mode

Debug mode

0

20

40

60

80

100

Gigabytes

Drive usage

Release mode (minimal "bootstrap" config)

Release mode

Debug mode

Release mode suggestion

• Enable everything you want

• Turn on LLVM_ENABLE_ASSERTIONS

• You may still need to limit
LLVM_PARALLEL_LINK_JOBS to 1

Creating a pass plugin DLL
Things become much faster here, I promise

Essential CMake settings

• You can build with your bootstrap, release-, or debug-mode
version of Clang (or MSVC if you really want to, but we’ve
made it this far already, so…); just be sure to use
clang-cl.exe instead of clang.exe

• CMAKE_PREFIX_PATH needs to point at the install directory of
the debug or release build you created.
• "cacheVariables": {
 "CMAKE_PREFIX_PATH": "C:/LLVM/src/llvm/build/llvm-debug/install"
}

• Debug mode _ITERATOR_DEBUG_LEVEL must match that of
your debug build of LLVM

• You may have to configure CMAKE_MT to be "mt.exe"

• Do not use add_llvm_pass_plugin – use add_library
instead.

Essential CMake settings (continued)

• StringAnalyzer – analysis pass

• StringAnalyzerPrinter – printing pass

• StringReverser – transformation pass

Writing the passes

Link: https://youtu.be/QiV8CeSkp2E

Writing the passes (demo)

https://youtu.be/QiV8CeSkp2E

• Implicit linking (a.k.a. static load or load-time dynamic
linking): the operating system automatically resolves symbols
from and loads external libraries (DLLs/shared objects) when
the process is loaded

• Explicit linking (a.k.a. on-demand runtime linking): an already
running process requests the operating system to load
external libraries into its process space and manually resolves
symbols for use; loading and unloading is explicitly
performed by the process

• Windows: LoadLibrary, GetProcAddress, FreeLibrary

• Linux, MacOS: dlopen, dlsym, dlclose

Implicit vs. explicit linking

• Our pass plugin DLL links against LLVM using implicit
linking.*
• * That is, we would be if shared library builds weren’t disabled by default on Windows in

LLVM’s CMake scripts. Our plugin will statically link against LLVM’s libraries.

• LLVM loads our pass plugin DLL (and many other types
of plugins) using explicit linking.

• We need to export llvmGetPassPluginInfo for
LLVM to find it in our DLL.

Which linking will be used?

• __declspec(dllexport)

• CMake target property
WINDOWS_EXPORT_ALL_SYMBOLS

• Module definition (.def) file  provides the most
granular control

Methods for exporting public symbols

Link: https://youtu.be/a0Dz-cX7W2o

Exporting llvmGetPassPluginInfo

https://youtu.be/a0Dz-cX7W2o

Link: https://youtu.be/X-o8814tbNs

Running the passes via opt.exe

https://youtu.be/X-o8814tbNs

We can’t debug the pass plugin DLL directly; we run
opt.exe --load-pass-plugin plugin.dll and
debug the opt.exe process instead.

Link: https://youtu.be/bPFr5L_feWU

Debugging the passes inside
Visual Studio

https://youtu.be/bPFr5L_feWU

• Visual Studio’s debugger can display LLVM types
natively – with some help.

• llvm::Module

• llvm::Type

• llvm::Value (covers just about everything else)

• Natvis covers a lot on its own

Adding utility code to help with
debugging

Link: https://youtu.be/iUw9H9iaX-0

Adding utility code to help with
debugging (demo)

https://youtu.be/iUw9H9iaX-0

Link: https://youtu.be/VKge6lctkO4

Running the passes via Clang

https://youtu.be/VKge6lctkO4

• Use SSH for building LLVM; not direct WSL file
system access

• Remote debugging: build debug-mode with
-gdwarf-3 for best results (YMMV)

Cross-compiling for Linux in
Visual Studio using WSL

• https://jvste.ch

• GitHub: jvstech

• X-Twitter: @jvs_tech

• Mastodon:
@jvstech@hachyderm.io

• Twitch: jvstech

• YouTube: @jvstech

Questions?
Contact info

Source code:
https://github.com/jvstech/vs-windows-llvm

https://jvste.ch/
https://github.com/jvstech/vs-windows-llvm

	Slide 1: Starting LLVM Development in Visual Studio on Windows
	Slide 2: Slide accessibility template
	Slide 3: About Me
	Slide 4: Why Windows?
	Slide 5: Why Visual Studio? Why not VSCode?
	Slide 6: Bootstrapping Clang and LLVM
	Slide 7: CMake Presets
	Slide 8: Initial CMakeUserPresets.json
	Slide 9: Initial CMakeUserPresets.json (zoom)
	Slide 10: Building and installing
	Slide 11: Creating a debug-mode Clang + LLVM toolchain
	Slide 12: Key points for debug builds
	Slide 13: Base debug configuration
	Slide 14: Windows-specific debug configuration
	Slide 15: LLVM settings for both debug and release builds
	Slide 16: LLVM-specific debug configuration
	Slide 17: Debug mode building and installing
	Slide 18: Debug mode building and installing
	Slide 19: Release mode suggestion
	Slide 20: Creating a pass plugin DLL
	Slide 21: Essential CMake settings
	Slide 22: Essential CMake settings (continued)
	Slide 23: Writing the passes
	Slide 24: Writing the passes (demo)
	Slide 25: Implicit vs. explicit linking
	Slide 26: Which linking will be used?
	Slide 27: Methods for exporting public symbols
	Slide 28: Exporting llvmGetPassPluginInfo
	Slide 29: Running the passes via opt.exe
	Slide 30: Debugging the passes inside Visual Studio
	Slide 31: Adding utility code to help with debugging
	Slide 32: Adding utility code to help with debugging (demo)
	Slide 33: Running the passes via Clang
	Slide 34: Cross-compiling for Linux in Visual Studio using WSL
	Slide 35: Questions? Contact info

